An accurate X-ray diffraction study of Vaska's compound, trans- $\mathrm{IrCl}(\mathrm{CO})\left(\mathbf{P P h}_{3}\right)_{2}$, including resolution of the carbonyl / chloride disorder problem

Melvyn Rowen Churchill, James C. Fettinger, Lisa A. Buttrey, Michael D. Barkan and Jeffrey S. Thompson

Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14214 (U.S.A.)
(Received August 12th, 1987)

Abstract

Vaska's compound, trans $-\mathrm{IrCl}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}$, crystallizes in the centrosymmetric triclinic space group $P \overline{1},\left(C_{i}^{1} ;\right.$ No. 2) with $a 9.2076(10), b$ 9.6458(16), c 10.4601(11) \AA A, $\alpha 72.290(11), \beta 89.597(10), \gamma 69.568(11)^{\circ}, V 824.17(18) \AA^{3}$ and $Z=1$. A complete shell of data for $2 \theta 4.5-50.0^{\circ}$ (Mo- $K_{\bar{\alpha}}$ radiation) was collected on a Syntex $\mathrm{P} 2_{1}$ automated four-circle diffractometer and the structure was solved and refined to $R_{F} 1.7 \%$ and $R_{w F} 2.1 \%$ for 2920 independent data. The trans$\operatorname{IrCl}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}$ molecule lies at a site of $C_{i}(\overline{1})$ symmetry and thereby suffers from disorder of CO and Cl ligands; the crystal is isomorphous with trans$\operatorname{Ir}\left(\mathrm{CH}_{3}\right)(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}$ and presumably with trans- $\mathrm{RhCl}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}$. The chloride ligand and atoms of the CO ligand have been clearly resolved; metal-ligand distances are Ir-P 2.330(1) $\AA, \mathrm{Ir}-\mathrm{Cl} 2.382(3) \AA$ and $\mathrm{Ir}-\mathrm{CO} 1.791(13) \AA$, with $\mathrm{C}-\mathrm{O}$ 1.161(18) \AA and $\mathrm{Ir}-\mathrm{C}-\mathrm{O}$ 175.1(12) ${ }^{\circ}$.

Introduction

Vaska's compound, trans- $\mathrm{IrCl}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}$, occupies a position of pivotal importance in the discovery of oxidative-addition reactions of transition metal complexes [1,2]. Despite this, no structural study of Vaska's compound has appeared in the primary literature, although several closely related iridium(I) species have been studied, viz; trans- $\operatorname{IrCl}(\mathrm{CO})\left[\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{o}-\mathrm{CH}_{3}\right)_{3}\right]_{2}$ (which suffers from $\mathrm{Cl} / \mathrm{CO}$ disorder [3]), trans- $\mathrm{IrCl}(\mathrm{CO})\left[\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4}-p-\mathrm{CH}_{3}\right)_{3}\right]_{2}$ (which is ordered [4]) and trans$\operatorname{Ir}\left(\mathrm{CH}_{3}\right)(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}$ (which suffers from $\mathrm{CH}_{3} / \mathrm{CO}$ disorder [5]). The analogous rhodium(I) complex, trans- $\mathrm{RhCl}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}$, has been studied. A report of a triclinic crystal form appeared in 1969 [6]. The structure was solved in the acentric space group $P 1$, but the resulting model has some disturbing features and is close to centric; one assumes that the authors failed to transform the model appropriately to
the centric space group $P \overline{1}$. Furthermore, the unit cell parameters and positional parameters closely parallel those of trans- $\operatorname{Ir}\left(\mathrm{CH}_{3}\right)(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}$, which was solved using a disordered centric model [5]. While our work was in progress, a crystallographic study of an ordered monoclinic crystal modification of trans$\mathrm{RhCl}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}$ was reported [7].

We began our study of Vaska's compound with the expectation that the chloride and carbonyl ligands would be disordered. (This proved to be the case, vida infra). With predicted distances of $\mathrm{Ir}-\mathrm{CO}-1.8 \AA$, $\mathrm{Ir} \cdots \mathrm{O}-2.9 \AA$ and $\mathrm{Ir}-\mathrm{Cl}-2.35 \AA$ (cf. [4]), one needs to be able to refine "atoms" separated by only (approximately) $0.45 \AA$. This is normally attainable with a "resolution" of $\leqslant 0.9 \AA$. With a good data set to $2 \theta=50^{\circ}$ (Mo- K_{α}), one should be able to resolve the (expected) disorder problem. This proved to be the case; our results are reported below.

Experimental

Crystals were grown by recrystallization of a sample of trans $-\operatorname{IrCl}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}$ from benzene/pentane.

Collection of X-ray diffraction data for trans-IrCl(CO) $\left(\mathrm{PPh}_{3}\right)_{2}$

The crystal selected for the X-ray structural study was a well-formed transparent parallelepiped with approximate orthogonal dimensions of $0.3 \mathrm{~mm} \times 0.3 \mathrm{~mm} \times 0.5$ mm . The crystal was sealed into a thin-walled glass capillary and was aligned accurately on a Syntex P2 2_{1} automated four-circle diffractometer. Subsequent set-up operations and collection of the X-ray diffraction data were carried out as described previously [8]; details are collected in Table 1.

The crystal was found to belong to the triclinic crystal system (diffraction symmetry $\overline{1}$; no systematic absences). Possible space groups are the noncentrosymmetric space group $P 1\left(C_{1}^{1} ;\right.$ No. 1) or the related centrosymmetric space group $P \overline{1}$ (C_{i}^{1}; No. 2). The observed unit cell volume of $824.17(18) \AA^{3}$ yields a volume of 11.4 $\AA^{3} /$ atom for $Z=1$. There is thus either one ordered molecule per crystallographic asymmetric unit in space group P1 or one-half of a disordered molecule per asymmetric unit in space group $P \overline{1}$. Since the crystals are isomorphous with those of trans- $\operatorname{Ir}\left(\mathrm{CH}_{3}\right)(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}$ [5], the analysis was begun by assuming the true space group to be $P \overline{1}$.

A complete shell of data $(\pm h, \pm k, \pm l)$ for $2 \theta 4.5-50.0^{\circ}\left(\mathrm{Mo}-K_{\bar{\alpha}}\right)$ was collected. All data were corrected for the effects of absorption by an empirical method based upon interpolation (in both 2θ and ϕ) between a set of four normalized ψ-scans of close-to-axial reflections. Symmetry-equivalent data ($h k l$ and $\overline{h k l}$) were averaged $(R(I) 1.47 \%$ and $R(w I) 1.75 \%$ for 2921 pair of averaged data) and corrected for Lorentz and polarization factors. All data were converted to unscaled $\left|F_{\circ}\right|$ values. (No data were deleted; all had $\left|F_{\circ}\right|>8 \sigma\left(\left|F_{\mathrm{o}}\right|\right)$). A Wilson plot was used to place the data on an approximately absolute scale, which also provided the value for the overall isotropic thermal parameter of $\bar{B} 2.59 \AA^{2}$.

Solution and refinement of the structure of trans- $\operatorname{IrCl}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}$

All calculations were performed by use of our locally-modified version of the Syntex XTL interactive crystallographic program package [9]. Throughout the analysis, calculated structure factors were based upon the analytical expressions for

Table 1
Experimental data for the X-ray diffraction study of trans- $\mathrm{IrCl}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}$
A. Crystal parameters at $24^{\circ} \mathrm{C}$ (297 K)
crystal system: triclinic
space group: $P \overline{1}\left(C_{i}^{1} ;\right.$ No. 2)
a $9.2076(10) \AA$
b $9.6458(16) \AA$
c $10.4601(11) \AA$
$\alpha 72.290(11)^{\circ}$
B 89.597(10) ${ }^{\circ}$
$\gamma 69.568(11)^{\circ}$
B. Measurement of intensity data

Diffractometer: Syntex P21
Radiation: Mo- $K_{\bar{a}}(\bar{\lambda} 0.710730 \AA)$
Monochromator: pyrolytic graphite ($2 \theta_{\mathrm{m}} 12.2^{\circ}$), equatorial mode; assumed 50% perfect/50\% ideally mosaic for polarization correction.
Reflections measured: $\pm h, \pm k, \pm l$ for $2 \theta 4.5-50.0^{\circ}$
Scan type: coupled θ (crystal)-2 θ (counter)
Scan range: $\left[2 \theta\left(K_{\alpha_{1}}\right)-1.0\right]-\left[2 \theta\left(K_{\alpha_{2}}\right)+1.0\right]^{\circ}$
Scan speed: $4.0^{\circ} / \mathrm{min}$ in 2θ
Background: stationary crystal and counter at each end of 2θ scan, each for $1 / 4$ of total scan time.
Total measurements: 6025 reflections, yielding 2921 unique data $(R(I)=1.47 \%$ and $R(w I) 1.75 \%$ for 2921 pairs of averaged data).
Standard reflections: 3 approximately mutually orthogonal reflections collected before every 97 data points; no decay observed.
Absorption coefficient: $\mu 45.0 \mathrm{~cm}^{-1}$; corrected empirically by interpolation (in 2θ and ϕ) between 4 pairs of close-to-axial ψ scans.
(410 and $\overline{410} 0,2 \theta 17.86^{\circ}, T_{\text {min }} / T_{\text {max }}=0.694$;
510 and $510,2 \theta 22.55^{\circ}, T_{\min } / T_{\max }=0.712$;
620 and $\overline{62} 0,2 \theta 26.74^{\circ}, T_{\text {min }} / T_{\text {max }}=0.725$;
721 and $721,2 \theta 31.76^{\circ}, T_{\min } / T_{\max }=0.713$).
the scattering factors of the neutral atoms; corrections for both the real (Δf^{\prime}) and imaginary ($i \Delta f^{\prime \prime}$) components of anomalous dispersion were included for all non-hydrogen atoms [10].

The function minimized in least-squares refinement processes was $\sum w\left(\left|F_{\mathrm{o}}\right|-\right.$ $\left.\left|F_{\mathrm{c}}\right|\right)^{2}$, where $w=\left[\sigma\left(\left|F_{\mathrm{o}}\right|\right)^{2}+\left(0.015\left|F_{\mathrm{o}}\right|\right)^{2}\right]^{-1}$. Discrepancy indices referred to below are defined in eq. 1-3. In eq. $3, \mathrm{NO}=$ number of observations and $\mathrm{NV}=$ number of variables.

$$
\begin{align*}
& R_{F}(\%)=100 \Sigma\left\|F_{\mathrm{o}}\left|-\left|F_{\mathrm{c}} \| / \Sigma\right| F_{\mathrm{o}}\right|\right. \tag{1}\\
& R_{w F}(\%)=100\left[\Sigma w\left(\left|F_{\mathrm{o}}\right|-\left|F_{\mathrm{c}}\right|\right)^{2} / \Sigma w\left|F_{\mathrm{o}}\right|^{2}\right]^{1 / 2} \tag{2}\\
& \mathrm{GOF}=\left[\Sigma \mathrm{w}\left(\left|F_{\mathrm{o}}\right|-\left|F_{\mathrm{c}}\right|\right)^{2} /(\mathrm{NO}-\mathrm{NV})\right]^{1 / 2} \tag{3}
\end{align*}
$$

The structure is an unusual case of the "self-phasing" variety. Reflections were phased by introducing the iridium atom at the origin ($0,0,0$). A difference-Fourier map was used to provide the location of the P and Cl atoms and all carbon atoms of the phenyl rings. The C and O atoms were input in calculated positions (strictly trans to the $\mathrm{Ir}-\mathrm{Cl}$ vector, with $\mathrm{Ir}-\mathrm{CO} 1.8 \AA, \mathrm{C}-\mathrm{O} 1.2 \AA$ and angle $\mathrm{Ir}-\mathrm{C}-\mathrm{O} 180^{\circ}$).

Full-matrix least-squares refinement of positional and thermal parameters (firstly isotropic and secondly anisotropic) for all non-hydrogen atoms proceeded smoothly to convergence (with no problems of coalescence of C, O and Cl atoms) yielding \boldsymbol{R}_{F} $2.2 \%, R_{w F} 2.9 \%$ and GOF 1.439. A difference-Fourier map, based upon those 891 data with $\sin \theta / \lambda<0.4$, provided the locations off all 15 independent hydrogen atoms as the strongest peaks on the map. The contributions from these atoms were now included in the model. Continued refinement, now including positional and isotropic thermal parameters for all hydrogen atoms, led to final convergence (maximum value of shift/esd for any parameter 0.03) with $R_{F} 1.7 \%, R_{w F} 2.1 \%$ and GOF 1.090 for 265 parameters refined against 2920 independent data. (The 100

Table 2
Final positional parameters for $\operatorname{trans}-\mathrm{IrCl}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}$

Atom	x	y	z	$B\left(\AA^{2}\right)$
Ir	0	0	0	
P	0.01902(7)	-0.20672(8)	0.19417(6)	
Cl	-0.20919(34)	0.16106(31)	0.08613(30)	
C(1)	0.1608(15)	-0.1241(14)	-0.0592(10)	
O(1)	$0.2614(13)$	-0.1967(13)	-0.1067(11)	
$\mathrm{C}(11)$	0.11433(30)	-0.19930(35)	0.34385(27)	
C(12)	0.1226(4)	-0.0582(4)	$0.34225(35)$	
C(13)	0.1933(5)	-0.0472(6)	0.4538(4)	
C(14)	0.2555(5)	-0.1758(7)	0.5661(4)	
C(15)	0.2479(6)	-0.3131(7)	$0.5679(4)$	
C(16)	0.1781 (5)	-0.3285(5)	0.45663(34)	
C(21)	0.1269 (4)	-0.40485(33)	0.19096(29)	
C(22)	0.2882(4)	-0.4508(4)	0.1854 (4)	
C(23)	0.3730 (6)	-0.5980(6)	$0.1784(5)$	
C(24)	0.2996 (10)	-0.6988(6)	0.1759(6)	
C(25)	$0.1415(11)$	-0.6534(6)	0.1791(8)	
C(26)	0.0546(6)	-0.5070(5)	$0.1865(5)$	
C(31)	-0.17206(32)	-0.20982(35)	0.23991 (29)	
C(32)	-0.2089(4)	-0.2406(4)	0.37202(33)	
C(33)	-0.3562(5)	-0.2427(6)	0.4000(5)	
C(34)	-0.4652(5)	-0.2148(6)	$0.2967(5)$	
C(35)	-0.4307(5)	-0.1850(7)	0.1660(5)	
C(36)	-0.2839(4)	-0.1802(6)	0.1369(4)	
H(12)	0.078(4)	0.034(5)	0.262(4)	5.1(8)
H(13)	$0.207(6)$	0.058(6)	0.443(5)	7.3(12)
H(14)	$0.304(6)$	-0.168(7)	$0.644(5)$	8.6(14)
H(15)	0.281(7)	-0.397(8)	$0.633(6)$	9.7(17)
H(16)	0.169(5)	-0.426(5)	0.461(4)	5.5(9)
H(22)	0.347(5)	-0.370(6)	0.174(5)	6.6(10)
H(23)	0.484(7)	-0.631(7)	0.179(6)	8.5(14)
H(24)	0.368(8)	-0.800(9)	0.164(6)	11.1(18)
H(25)	$0.100(7)$	-0.720(8)	$0.175(6)$	9.4(16)
H(26)	-0.053(5)	-0.476(5)	0.188(4)	5.9(10)
H(32)	-0.125(5)	-0.264(5)	0.449(4)	6.2(10)
H(33)	-0.379(7)	-0.272(7)	0.510(6)	$9.2(14)$
H(34)	-0.576(7)	-0.214(7)	0.314(6)	9.4(15)
H(35)	-0.510(7)	-0.168(7)	0.091(5)	9.4(15)
H(36)	-0.252(5)	-0.162(5)	0.048(4)	5.4(9)

Table 3
Final anisotropic thermal parameters for $\operatorname{trans}-\operatorname{IrCl}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}{ }^{a}$

Atom	B_{11}	B_{22}	B_{33}	B_{12}	B_{13}	B_{23}
Ir	$2.541(7)$	$2.296(7)$	$2.430(6)$	$-0.684(5)$	$0.515(4)$	$-0.697(4)$
P	$2.896(25)$	$2.651(25)$	$2.704(24)$	$-1.156(21)$	$0.307(19)$	$-0.634(20)$
Cl	$4.84(18)$	$4.14(15)$	$3.77(15)$	$-0.14(14)$	$1.99(12)$	$-1.35(9)$
$\mathrm{C}(1)$	$6.0(7)$	$4.0(5)$	$2.05(28)$	$-1.3(5)$	$2.45(29)$	$-1.32(25)$
$\mathrm{O}(1)$	$7.3(6)$	$6.5(5)$	$5.38(35)$	$1.3(4)$	$3.23(34)$	$-1.71(29)$
$\mathrm{C}(11)$	$2.97(10)$	$4.05(12)$	$3.07(10)$	$-1.39(9)$	$0.44(8)$	$-1.17(9)$
$\mathrm{C}(12)$	$3.96(13)$	$4.32(14)$	$4.64(14)$	$-1.12(11)$	$-0.06(11)$	$-2.21(12)$
$\mathrm{C}(13)$	$5.20(17)$	$6.52(22)$	$6.39(21)$	$-1.51(16)$	$-0.11(15)$	$-4.06(18)$
$\mathrm{C}(14)$	$5.14(17)$	$9.38(31)$	$4.64(17)$	$-1.95(19)$	$-0.00(14)$	$-3.77(19)$
$\mathrm{C}(15)$	$6.68(22)$	$8.43(30)$	$3.66(16)$	$-2.38(21)$	$-0.98(15)$	$-0.47(18)$
$\mathrm{C}(16)$	$6.55(20)$	$5.35(18)$	$3.45(13)$	$-2.43(16)$	$-0.70(12)$	$-0.07(12)$
$\mathrm{C}(21)$	$4.47(13)$	$2.71(11)$	$3.46(11)$	$-1.02(10)$	$-0.01(9)$	$-0.69(9)$
$\mathrm{C}(22)$	$4.40(14)$	$4.09(15)$	$5.33(16)$	$-0.00(12)$	$-0.35(12)$	$-1.67(13)$
$\mathrm{C}(23)$	$6.93(24)$	$5.36(22)$	$6.21(21)$	$1.71(19)$	$-1.27(18)$	$-2.47(17)$
$\mathrm{C}(24)$	$12.9(5)$	$3.98(21)$	$7.90(29)$	$1.26(26)$	$-2.21(29)$	$-3.03(20)$
$\mathrm{C}(25)$	$13.1(5)$	$4.02(21)$	$11.5(4)$	$-3.22(29)$	$-0.4(4)$	$-3.20(24)$
$\mathrm{C}(26)$	$7.35(25)$	$3.69(16)$	$8.24(25)$	$-2.63(16)$	$0.11(20)$	$-1.86(16)$
$\mathrm{C}(31)$	$3.16(11)$	$3.53(12)$	$3.84(12)$	$-1.54(9)$	$0.57(9)$	$-1.00(9)$
$\mathrm{C}(32)$	$4.62(14)$	$4.88(15)$	$4.34(14)$	$-2.48(12)$	$1.61(11)$	$-1.83(12)$
$\mathrm{C}(33)$	$5.42(18)$	$7.44(23)$	$6.62(21)$	$-3.52(17)$	$3.00(16)$	$-3.29(18)$
$\mathrm{C}(34)$	$4.19(16)$	$8.26(27)$	$8.82(28)$	$-3.28(18)$	$2.50(17)$	$-3.54(23)$
$\mathrm{C}(35)$	$4.39(17)$	$8.99(30)$	$7.30(24)$	$-3.43(19)$	$-0.11(16)$	$-1.88(21)$
$\mathrm{C}(36)$	$4.02(14)$	$7.99(24)$	$4.58(16)$	$-3.19(15)$	$0.17(12)$	$-1.13(15)$

${ }^{a}$ Anisotropic thermal parameters are in standard XTL format and enter the expression for the calculated structure factor in the form: $\exp \left[-0.25\left(B_{11} \cdot h^{2} a^{\star 2}+\ldots 2 B_{12} \cdot h k a^{\star} b^{\star}+\ldots\right)\right]$.
reflection, with $2 \theta 4.74^{\circ}$, was removed from the data set since it had $\left|F_{o}\right| \ll\left|F_{c}\right|$, i.e., 97.2 versus 122.0 , and clearly suffered from "clipping" by the Pb backstop.) All data had been subjected to a small correction for secondary extinction by use of the approximation to the Zachariasen correction [11] shown in eq. 4.
$\left|F_{\mathrm{o}, \text { cor }}\right|=\left|F_{\text {o, uncor }}\right|\left(1.0+g I_{\mathrm{o}}\right)$
The value determined for g was 3.24×10^{-8}.
A final difference-Fourier map, based upon all data, had peaks of height up to $1.18 \mathrm{e}^{-} / \AA^{3}$ very close to the origin (i.e., the position of the iridium atom) and up to $0.38 \mathrm{e}^{-} / \AA^{3}$ in a general position. The structure is thus clearly both correct and complete.

Final positional parameters are provided in Table 2; anisotropic thermal parameters are collected in Table 3.

Discussion

The molecular structure and atomic labelling scheme are illustrated in Fig. 1, while Fig. 2 presents a stereoscopic view of the molecule. Interatomic distances and angles are collected in Tables 4 and 5.

The unit cell contains a single molecule of trans- $\mathrm{IrCl}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}$. In the crystal these molecules are statistically (randomly) disordered such that the chloride and

Fig. 1. Labelling of non-hydrogen atoms in trans-IrCl(CO) $\left(\mathrm{PPh}_{3}\right)_{2}$. Atoms labelled with a prime are related to the basic asymmetric unit via the transformation $x^{\prime}, y^{\prime}, z^{\prime}=-x,-y,-z$. Only one site for the chloride and carbonyl ligands is shown. The second site is related to that shown by inversion through the origin (i.e., the iridium atom). Thus atoms $\mathrm{Cl}^{\prime}, \mathrm{C}(1)^{\prime}$ and $\mathrm{O}(1)^{\prime}$ have been omitted for clarity. (ORTEP diagram, 30% probability ellipsoids).

Fig. 2. A stereoscopic view of the trans- $\mathrm{IrCl}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}$ molecule.

Table 4
Interatomic distances (in \AA) for trans- $\operatorname{IrCl}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}$

(A) Iridium-ligand distances			
Ir-P	2.330(1)	$\mathrm{Ir}-\mathrm{C}(1)$	1.791(13)
$\mathrm{Ir}-\mathrm{P}(-x,-y,-z)$	2.330(1)	Ir $\cdot \cdots \mathrm{O}(1)$	2.949(12)
$\mathrm{Ir}-\mathrm{Cl}$	2.382(3)	$\mathrm{Ir} \cdot \mathrm{H}$ (12)	2.977(40)
(B) Phosphorus-carbon distances			
$\mathrm{P}-\mathrm{C}(11)$	1.832(3)	P-C(31)	1.828(3)
P-C(21)	1.831(3)		
(C) C -O and disordered (CO) $\cdots \mathrm{Cl}$ distances			
$\mathrm{C}(1)-\mathrm{O}(1)$	1.161(18)	$\mathrm{O}(1) \cdots \mathrm{Cl}(-x,-y,-z)$	0.569(13)
$\mathrm{C}(1) \cdots \mathrm{Cl}(-x,-y,-z)$	0.595(13)		
(D) Carbon-carbon distances			
$\mathrm{C}(11)-\mathrm{C}(12)$	1.385(5)	C(21)-C(22)	1.400(5)
$\mathrm{C}(12)-\mathrm{C}(13)$	$1.390(6)$	$\mathrm{C}(22)-\mathrm{C}(23)$	1.386(7)
$\mathrm{C}(13)-\mathrm{C}(14)$	1.369(7)	$\mathrm{C}(23)-\mathrm{C}(24)$	1.370(10)
$\mathrm{C}(14)-\mathrm{C}(15)$	$1.345(9)$	$\mathrm{C}(24)-\mathrm{C}(25)$	1.369 (13)
$\mathrm{C}(15)-\mathrm{C}(16)$	$1.405(6)$	$\mathrm{C}(25)-\mathrm{C}(26)$	$1.385(8)$
$\mathrm{C}(16)-\mathrm{C}(11)$	$1.376(5)$	$\mathrm{C}(26)-\mathrm{C}(21)$	$1.379(6)$
$\mathrm{C}(31)-\mathrm{C}(32)$	1.388(4)	$\mathrm{C}(34)-\mathrm{C}(35)$	1.367(7)
$\mathrm{C}(32)-\mathrm{C}(33)$	1.391(6)	$\mathrm{C}(35)-\mathrm{C}(36)$	1.397(7)
C(33)-C(34)	$1.377(7)$	C(36)-C(31)	1.388(5)
(E) Refined carbon - hydrogen distances			
$\mathrm{C}(12)-\mathrm{H}(12)$	0.98(4)	$\mathrm{C}(22)-\mathrm{H}(22)$	1.08(5)
$\mathrm{C}(13)-\mathrm{H}(13)$	1.04(6)	$\mathrm{C}(23)-\mathrm{H}(23)$	0.96(7)
$\mathrm{C}(14)-\mathrm{H}(14)$	0.97(6)	$\mathrm{C}(24)-\mathrm{H}(24)$	1.00(8)
$\mathrm{C}(15)-\mathrm{H}(15)$	0.84(7)	C(25)-H(25)	0.86 (7)
$\mathrm{C}(16)-\mathrm{H}(16)$	0.96(5)	C(26)-H(26)	0.94(5)
$\mathrm{C}(32)-\mathrm{H}(32)$	1.04(5)	C(35)-H(35)	1.01(6)
$\mathrm{C}(33)-\mathrm{H}(33)$	1.13(6)	C(36)-H(36)	0.96(4)
$\mathrm{C}(34)-\mathrm{H}(34)$	1.04(7)		

carbonyl ligands occupy each of the possible mutually trans sites with 50% probability; thus, as shown below, molecule 1 and molecule 2 make up the disordered pattern 3.

Although the molecular pattern is subject to disorder, there are no abnormally short intermolecular distances; clearly, the molecules pack principally by minimizing contacts between PPh_{3} ligands.

The chloride ligand and the atoms of the carbonyl ligand have been refined independently. The Ir-Cl bond length is $2.382(3) \AA$ and the $\mathrm{Ir}-\mathrm{CO}$ bond length is

Table 5
Interatomic angles (in deg.) for trans- $\mathrm{IrCl}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}$

(A) Angles around the iridium atom:			
$\mathrm{P}-\mathrm{Ir}-\mathrm{Cl}$	87.75(8)	$\mathrm{P}(-x,-y,-z)-\mathrm{Ir}-\mathrm{Cl}$	92.25(8)
$\mathrm{P}-\mathrm{Ir}-\mathrm{C}(1)$	90.81(40)	$\mathrm{P}(-x,-y,-z)-\mathrm{Ir}-\mathrm{C}(1)$	89.19(40)
$\mathrm{Cl}-\mathrm{Ir}-\mathrm{C}(1)$	178.08(40)	$\mathbf{P}(-x,-y,-z)-\mathrm{Ir}-\mathrm{P}$	180.00(-)
(B) Ir $-\mathrm{C}-\mathrm{O}$ and $\mathrm{C} \cdots \mathrm{Cl} \cdots \mathrm{O}$ angles			
$\mathrm{Ir}-\mathrm{C}(1)-\mathrm{O}(1)$	175.1(12)	$\mathrm{C}(1) \cdots \mathrm{Cl}(-x,-y,-z) \cdots \mathrm{O}(1)$	172.3(18)
(C) Ir-P-C angles			
$\mathrm{Ir}-\mathrm{P}-\mathrm{C}(11)$	113.37(10)	Ir-P-C(31)	112.25(10)
$\mathrm{Ir}-\mathrm{P}-\mathrm{C}(21)$	117.37(10)		
(D) $C-P-C$ angles			
C(11)-P-C(21)	103.41(14)	$\mathrm{C}(21)-\mathrm{P}-\mathrm{C}(31)$	104.13(14)
$\mathbf{C}(11)-\mathrm{P}-\mathrm{C}(31)$	105.06(14)		
(E) $P-C-C$ angles			
$\mathrm{P}-\mathrm{C}(11)-\mathrm{C}(12)$	118.37(24)	P-C(21)-C(26)	122.66(30)
$\mathrm{P}-\mathrm{C}(11)-\mathrm{C}(16)$	122.41(27)	$\mathrm{P}-\mathrm{C}(31)-\mathrm{C}(32)$	122.93(25)
$\mathrm{P}-\mathrm{C}(21)-\mathrm{C}(22)$	118.33(26)	$\mathrm{P}-\mathrm{C}(31)-\mathrm{C}(36)$	117.81(27)
(F) $\mathrm{C}-\mathrm{C}-\mathrm{C}$ angles			
$\mathrm{C}(16)-\mathrm{C}(11)-\mathrm{C}(12)$	119.23(32)	$\mathrm{C}(25)-\mathrm{C}(24)-\mathrm{C}(23)$	119.9(7)
$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{C}(11)$	120.26 (35)	$\mathrm{C}(26)-\mathrm{C}(25)-\mathrm{C}(24)$	120.8(7)
$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{C}(12)$	120.27(43)	$\mathrm{C}(21)-\mathrm{C}(26)-\mathrm{C}(25)$	$120.1(5)$
$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{C}(13)$	119.62(49)	$\mathrm{C}(36)-\mathrm{C}(31)-\mathrm{C}(32)$	119.26(33)
$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{C}(14)$	121.60(49)	$\mathrm{C}(33)-\mathrm{C}(32)-\mathrm{C}(31)$	119.98(36)
$\mathrm{C}(11)-\mathrm{C}(16)-\mathrm{C}(15)$	119.02(40)	$\mathrm{C}(34)-\mathrm{C}(33)-\mathrm{C}(32)$	120.01(45)
$\mathrm{C}(26)-\mathrm{C}(21)-\mathrm{C}(22)$	118.92(35)	$\mathrm{C}(35)-\mathrm{C}(34)-\mathrm{C}(33)$	120.81(50)
$\mathrm{C}(23)-\mathrm{C}(22)-\mathrm{C}(21)$	119.98(39)	$\mathrm{C}(36)-\mathrm{C}(35)-\mathrm{C}(34)$	119.51(49)
$\mathrm{C}(24)-\mathrm{C}(23)-\mathrm{C}(22)$	120.3(5)	$\mathrm{C}(31)-\mathrm{C}(36)-\mathrm{C}(35)$	120.40(41)
(G) $C-C-H$ angles			
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{H}(12)$	119.6(25)	$\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{H}(22)$	121.6(27)
$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{H}(12)$	120.2(25)	$\mathrm{C}(23)-\mathrm{C}(22)-\mathrm{H}(22)$	118.0(27)
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{H}(13)$	117.1(30)	$\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{II}(23)$	119.9(38)
$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{H}(13)$	122.3(30)	$\mathrm{C}(24)-\mathrm{C}(23)-\mathrm{H}(23)$	119.7(38)
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{H}(14)$	120.3(36)	$\mathrm{C}(23)-\mathrm{C}(24)-\mathrm{H}(24)$	115.4(43)
$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{H}(14)$	120.1(36)	$\mathrm{C}(25)-\mathrm{C}(24)-\mathrm{H}(24)$	124.5(43)
$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{H}(15)$	126.0(48)	$\mathrm{C}(24)-\mathrm{C}(25)-\mathrm{H}(25)$	116.7(47)
$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{H}(15)$	112.4(48)	$\mathrm{C}(26)-\mathrm{C}(25)-\mathrm{H}(25)$	122.6(47)
$\mathrm{C}(11)-\mathrm{C}(16)-\mathrm{H}(16)$	120.4(28)	$\mathrm{C}(21)-\mathrm{C}(26)-\mathrm{H}(26)$	119.3(30)
$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{H}(16)$	120.5(28)	$\mathrm{C}(25)-\mathrm{C}(26)-\mathrm{H}(26)$	120.6(31)
$\mathrm{C}(31)-\mathrm{C}(32)-\mathrm{H}(32)$	119.5(27)	$\mathrm{C}(35)-\mathrm{C}(34)-\mathrm{H}(34)$	117.1(36)
$\mathrm{C}(33)-\mathrm{C}(32)-\mathrm{H}(32)$	120.5(27)	$\mathrm{C}(34)-\mathrm{C}(35)-\mathrm{H}(35)$	120.4(37)
$\mathrm{C}(32)-\mathrm{C}(33)-\mathrm{H}(33)$	117.4(32)	$\mathrm{C}(36)-\mathrm{C}(35)-\mathrm{H}(35)$	120.1(37)
$\mathrm{C}(34)-\mathrm{C}(33)-\mathrm{H}(33)$	122.6(32)	$\mathrm{C}(31)-\mathrm{C}(36)-\mathrm{H}(36)$	116.4(27)
$\mathrm{C}(33)-\mathrm{C}(34)-\mathrm{H}(34)$	122.0(36)	$\mathrm{C}(35)-\mathrm{C}(36)-\mathrm{H}(36)$	123.2(27)

$1.791(13) \AA$, with C-O $1.161(18) \AA$ and angle $\mathrm{Ir}-\mathrm{C}-\mathrm{O} 175.1(12)^{\circ}$. The chloride ligand and carbonyl ligand at a given site are associated with the interatomic separations $\mathrm{C}(1) \cdots \mathrm{Cl}(-x,-y,-z) 0.595(13) \AA$ and $\mathrm{O}(1) \cdots \mathrm{Cl}(-x,-y,-z)$ $0.569(13) \AA$, somewhat greater than our original estimate. The angle $C(1) \ldots$
$\mathrm{Cl}(-x,-y,-z) \cdots \mathrm{O}(1)$ is $172.3(18)^{\circ}$, so that the $\operatorname{Ir}-\mathrm{CO}$ and $\mathrm{Ir}-\mathrm{Cl}(-x,-y,-z)$ vectors are not truly coincident.

The central iridium(I) atom has a slightly irregular square-planar coordination environment. The Ir-P distances are equivalent at $2.330(1) \AA$. The trans angles are $\mathrm{P}-\mathrm{Ir}-\mathrm{P}(-x,-y,-z) 180.00^{\circ}$ and $\mathrm{Cl}-\mathrm{Ir}-\mathrm{C}(1) 178.08(40)^{\circ}$. The cis angles are $\mathrm{P}-\mathrm{Ir}-\mathrm{Cl} 87.75(8)^{\circ}, \mathrm{P}(-x,-y,-z)-\mathrm{Ir}-\mathrm{Cl} 92.25(8)^{\circ}, \mathrm{P}-\mathrm{Ir}-\mathrm{C}(1) 90.81(40)^{\circ}$ and $\mathrm{P}(-x,-y,-z)-\mathrm{Ir}-\mathrm{C}(1) 89.19(40)^{\circ}$.

Within the PPh_{3} ligands, phosphorus-carbon bond lengths range from 1.828(3) to $1.832(3) \AA$, averaging $1.830 \pm 0.003 \AA$. The phosphorus atoms have a stereochemical environment which is distorted from T_{d} towards $C_{3 v}$; the $\mathrm{Ir}-\mathrm{P}-\mathrm{C}$ (ipso) angles are all greater than the regular tetrahedral value of 109.47° ($\mathrm{Ir}-\mathrm{P}-\mathrm{C}(31) \mathrm{112.25}(10)^{\circ}$, $\operatorname{Ir}-\mathrm{P}-\mathrm{C}(11) 113.37(10)^{\circ}$, $\operatorname{Ir}-\mathrm{P}-\mathrm{C}(21) 117.37(10)^{\circ}$; average 114.33°), while the C (ipso) - $\mathrm{P}-\mathrm{C}\left(\right.$ ipso $\left.^{\prime}\right)$ angles are all contracted from the regular tetrahedral value (viz. $\mathrm{C}(11)-\mathrm{P}-\mathrm{C}(21) \quad 103.41(14)^{\circ}, \quad \mathrm{C}(21)-\mathrm{P}-\mathrm{C}(31) 104.13(14)^{\circ}, \quad \mathrm{C}(11)-\mathrm{P}-\mathrm{C}(31)$ $105.06(14)^{\circ}$; average 104.20°).

Carbon-carbon distances within the phenyl rings range from 1.345(9) to 1.405(6) \AA, averaging $1.382 \pm 0.014 \AA$; the refined carbon-hydrogen distances range from $0.84(7)$ through $1.13(6) \AA$, averaging $0.99 \pm 0.08 \AA$ (cf. the accepted "X-ray determined" value of $-0.95 \AA$ [12]).

It is interesting to note that there are two very weak $\mathrm{Ir} \cdots \mathrm{H}$ interactions involving the aromatic hydrogen atoms of the PPh_{3} ligands. Thus, Ir $\cdots \mathrm{H}(12)=$ Ir $\cdots \mathrm{H}(12)(-x,-y,-z) 2.977(40) \AA$. Atoms $\mathrm{H}(12)$ and $\mathrm{H}(12)(-x,-y,-z)$ lie in positions approximating, very roughly, to the fifth and sixth position for octahedral coordination about the iridium atom. (Angles of note are P-Ir $\cdots \mathrm{H}(12) 63.4(8)^{\circ}$, $\mathrm{P}(-x,-y,-z)-\mathrm{Ir} \cdots \mathrm{H}(12) 116.6(8)^{\circ}, \mathrm{Cl}-\mathrm{Ir} \cdots \mathrm{H}(12) 64.0(8)^{\circ}$ and $\mathrm{C}(1)-\mathrm{Ir} \cdots$ $\mathrm{H}(12) 114.2(9)^{\circ}$; for $\mathrm{H}(12)(-x,-y,-z)$ the appropriate angles are the supplements of those given for $\mathrm{H}(12)$.)

Table 6 relates interatomic distances for the three accurately determined structures in the trans-MCl(CO) $\left(\mathrm{PAr}_{3}\right)_{2}$ series $(\mathbf{M}=\mathbf{I r}, \mathrm{Rh} ; \mathbf{A r}=\mathbf{P h}, p$-tolyl). It is clear that, finally, a self-consistent set of geometric parameters is available for this important class of materials.

Table 6
Comparison of bond lengths from accurate structural studies on trans- $\mathrm{MCl}(\mathrm{CO})\left(\mathrm{PAr}_{3}\right)_{2}$ species

Complex	R_{F}	Bond lengths	
trans- $\mathrm{Ir}(\mathrm{CO}) \mathrm{Cl}\left(\mathrm{PPh}_{3}\right)_{2}$	1.7%	$\mathrm{Ir}-\mathrm{P}$	$2.330(1)$
		$\mathrm{Ir}-\mathrm{Cl}$	$2.382(3)$
		$\mathrm{Ir}-\mathrm{CO}$	$1.791(13)$
trans- $\mathrm{Ir}(\mathrm{CO}) \mathrm{Cl}\left[\mathrm{P}(\mathrm{p}-\mathrm{tol})_{3}\right]_{2}$	3.5%	$\mathrm{Ir}-\mathrm{P}$	$2.330(2)$
(ref. 4)		$\mathrm{Ir}-\mathrm{Cl}$	$2.332(2)$
		$\mathrm{Ir}-\mathrm{CO}$	$2.364(2)$
trans- $\mathrm{Rh}(\mathrm{CO})\left(\mathrm{Cl}\left(\mathrm{PPh}_{3}\right)_{2}\right.$	3.7%	$\mathrm{Rh}-\mathrm{P}$	$1.817(8)$
monoclinic form		$\mathbf{R h}-\mathrm{Cl}$	$2.327(1)$
(ref. 7)		$\mathbf{R h - C O}$	$2.333(1)$

Additional material available

A list of observed and calculated structure factor amplitudes is available upon request from M.R.C.

References

1 L. Vaska and J.W. Di Luzio, J. Am. Chem. Soc., 83 (1961) 2784.
2 L. Vaska, Acc. Chem. Res., 1 (1968) 335.
3 R. Brady, W.H. DeCamp, B.R. Flynn, M.L. Schneider, J.D. Scott, L. Vaska and M.F. Werneke, Inorg. Chem., 14 (1975) 2669.
4 M.R. Churchill, J.C. Fettinger, B.J. Rappoli and J.D. Atwood, Acta Cryst., C43 (1987) 1697.
5 W.M. Rees, M.R. Churchill, J.C. Fettinger and J.D. Atwood, Organometallics, 4 (1985) 2179.
6 A. Del Pra, G. Zanotti and P. Segula, Cryst. Struct. Commun., 8 (1979) 959.
7 A.L. Rheingold and S.J. Geib, Acta Cryst. C, 43 (1987) 784.
8 M.R. Churchill, R.A. Lashewycz and F.J. Rotella, Inorg. Chem., 16 (1977) 265.
9 Syntex XTL Operations Manual, 2nd edit., Syntex Analytical Instruments, Inc., Cupertino, California 95014, 1976.
10 International Tables for X-ray Crystallography, Volume 4, Kynoch Press, Birmingham, England, 1974; p. 99-100 and 149-150.
11 W.H. Zachariasen, Acta Cryst., 16 (1963) 1139; see also G.H. Stout and L.H. Jensen, X-Ray Structure Determination, Macmillan, London, 1968, p. 411-412, especially eq. 17.16.
12 M.R. Churchill, Inorg. Chem., 12 (1973) 1213.

